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CoDE-GAN: Content Decoupled and Enhanced
GAN for Sketch-guided Flexible Fashion Editing
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Abstract—Rapid advancements in generative models, including
generative adversarial networks (GANs) and diffusion models,
have made possible of automated image editing through the use
of text descriptions, semantic segmentation, and/or reference style
images. Nevertheless, in terms of fashion image editing, it often
requires more flexible, and typically iterative, modifications to
the image content that existing methods struggle to achieve.
This paper proposes a new model called Content Decoupled and
Enhanced GAN (CoDE-GAN), which is formulated and trained
for the task of image reconstruction, more specifically, image
inpainting with sketch-guidance. Through this proxy task, the
trained model can be used for flexible image editing, generating
new images with consistent colours and required textures based
on sketch inputs. In this new model, a content decoupling block
is introduced including specially designed dual encoders, which
pre-process inputs and transform into separated structure and
texture representations. Moreover, a content enhancing module
is designed and applied to the decoder, improving the colour
consistency and refining the texture of the generated images.
The proposed CoDE-GAN can achieve coarse-to-fine results in
one single stage. Extensive experiment on three datasets, covering
human, garment-only and scene images, show that CoDE-GAN
outperforms other state-of-the-art methods in terms of both
generated image quality and editing flexibility. The code will
be released once the paper is published.

Index Terms—Fashion image editing, content decoupling, con-
tent enhancement, GAN-based.

I. INTRODUCTION

IMAGE editing has drawn great attention in the digital era
and is used in many tasks such as removal of unwanted

objects and adjusting style. Typically, image editing is com-
pleted by the use of professional software or tools (e.g., Adobe
Photoshop, Fotor Photos). The use of such software or tools,
however, requires professional knowledge, and the process is
also tedious, time-consuming and skill dependent. Benefited
from the success in generative adversarial networks (GAN),
image editing can now be automated using inputs such as
text descriptions [1]–[3], semantic segmentation [4], [5], and
reference style images [6]. GAN-based methods are recently
developed for interesting applications of fashion image editing,
for example, fashion images are edited into different poses by
pose-guided image synthesis [7], [8] or different clothing are
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(a) Edit to a Circular Skirt (b) Edit to a Tiered Skirt

Fig. 1. The user may have various and changeable demands on a fashion
garment. For example, they may be satisfied with the skirt color but want
to have different styles. Our proposed CoDE-GAN enables the user to draw
simplified sketches to flexibly edit the clothing shape with consistent textures.

‘tried-on’ on users bodies based on their reference photos [9],
with astonishing performance in terms of geometric shape or
texture transformation.

Nevertheless, most image editing tasks in the fashion do-
main require more flexible and controllable modifications to
the target fashion images. Fig. 1 illustrates a scenario that is
common in fashion design or fashion presentation, in which
a user wants to make some minor modifications to the partial
region of the skirt, like changing its type to be a circle skirt
(Fig. 1 (a)) or changing its length to be a tiered skirt (Fig.
1 (b)). Those above-mentioned existing GAN-based methods
are not suitable. In order to facilitate users to freely edit their
ideas on the image, sketch-guided methods were proposed
recently [10]–[14] and received more and more attention.
These approaches are based on sketch-guided image inpainting
techniques that reconstruct the masked image IM with sketch
S and mask M as reference. When editing an image, the
user could draw their preferred sketch to modify the shape.
However, it is still challenging to achieve sketch-controlled
editing via the sketch-guided inpainting approach. Although
the sketch provides guidance for the structural information,
it mainly captures the boundary and lacks detail in the inner
region. As a result, the synthesized textures become less plau-
sible and exhibit inconsistencies with the unmasked region.
This problem is particularly pronounced when dealing with
large masked regions or complex input sketches, making it
even more challenging for the model to generate images with
consistent structure and texture.

To address this issue, E2I [11] adopts a coarse-to-fine
architecture, applying a contextual attention mechanism to
improve the synthesized textures in the fine stage. Gated Conv
[10] learns a soft mask to weight different regions, improve the
model’s ability in inferring the missing content by referring to
the unmasked region. However, their methods never consider
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to effectively utilize sketch to guide the synthesis. Instead, they
explicitly concatenate the sketch to learn a synthesis. Fig. 2 (a)
illustrates this. Instead of simply concatenation, DeFLOCNet
[14] argues that the sparse sketch may vanish through the
network layers. Therefore, they propose to insert sketch into
every skip connections between encoder and decoder. Fig. 2
(b) shows their ideas. Their approach could emphasize the
importance of sketch but less effective in inferring sketch-
contoured textures. Recently, ControlNet [15] introduced an
image generation model based on diffusion models [16]–[19],
which can use sketches to control the spatial structure of syn-
thesized images. By integrating ControlNet with the inpainting
model of Stable Diffusion [20], it becomes possible to per-
form sketch-guided image editing tasks. However, ControlNet
heavily relies on textual descriptions for synthesizing image
textures. In the absence of a text prompt, as in this specific
task, ControlNet struggles to produce consistent textures.

In this paper, we propose a novel model, Content Decoupled
& Enhanced GAN (CoDE-GAN) to address these issues.
Different from previous work, our proposed model decouples
the image content into structure and texture representations
through a Content Decoupling Module (CDM). Specifically, a
condition decoupling block (CDB) is first used to obtain the
structure and texture conditions from the input set x. Then,
different encoders are utilized to learn the specific representa-
tions for the structure and texture conditions. Fig. 2 (c) shows
a simplified structure of our decoupling idea. There are two
advantages to doing this: (1) The encoder ϵt only handles
texture conditions and enables the model to focus more on
texture synthesis and learn better texture representations. (2)
The structure encoder ϵs benefits the latter synthesis process
by obtaining structure representation that is distinct from
texture representation. These enhanced representations can
then help to generate better realistic images having a consistent
structure with the input sketch and reasonable texture with
the unmasked region. In addition, to further improve the
consistency of textures within the content region, we add
a Content Enhancement Module (CEM) to the generation
decoder. Fig. 3 shows the detailed architecture. The CEM
extracts intermediate features from the decoder and transforms
them into a single feature map, and then adds a constraint
loss to constrain the similarity between the feature map and
the grey image. If the synthesized textures are consistent with
unedited region, the content response should be similar in
feature level.

In conclusion, our contributions are as follows:
1) We propose a novel network for flexible editing of a

fashion image generating content with consistent tex-
tures and sketches.

2) The content decoupling module we designed could faith-
fully obtain sketch and texture representations which
lead to robust performance on flexible editing.

3) The content enhancement module we designed could
improve the consistency of synthesized content.

4) Extensive experiments are conducted to demonstrate
the performance of our proposed CoDE-GAN on four
datasets, including fashion human ATR dataset [21],
in-shop Garment dataset [22], CafiDataset and LSUN
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injection (b), and ours decoupling (c).

outside church dataset [23]. On all these datsets, our
methods achieves good and robust performance in FID,
SSIM and PSNR metrics.

II. RELATED WORK

A. Fashion Image Editing

Fashion image editing tasks could be classified, according
to the target objects being edited, as human-centric editing and
garment-centric editing.

a) Human-centric Editing: This task primarily addresses
two major challenges: virtual try-on and pose transfer. Virtual
try-on requires transferring a source cloth to the target human
body. While the latter, pose transfer, is about synthesizing
consistent human images across a range of poses.

VITON [24] is the first work that considered image-based
virtual try-on. They tackled the misalignment issue between
source clothing and the target human pose by using TPS [25]
to adapt the cloth according to key point correspondences.
Moreover, they introduced a refinement network that predicts a
composition mask, locating the exact region for try-on. To pre-
serve the characteristics of the source cloth, Wang et al. [26]
introduced CP-VTON, which employs a Geometric Matching
Module (GMM) to determine the TPS transformation based on
human parsing and pose data. LA-VITON [27] leveraged the
StyleGAN [28] structure, directing the generator to emphasize
local clothing deformation, thereby enhancing the synthesized
textures. Despite the significant results achieved by the pre-
vious work, they are less effective in addressing reasonable
try-on results in self-occlusion regions (e.g., crossed arms).
To address this issue, Yang et al. addressed this in ACGPN
[29] by predicting post-try-on human parsing results, instead
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of the conventional composition mask. To allow seamless try-
on results, they further introduce an inpainting module that
fills in the area where the warped cloth will go.

Another approach to address complex pose and self-
occlusion is considering pose transfer. Ren et al. [30] intro-
duced a global flow framework that utilizes pose data to predict
flow between source and target images. Subsequently, feature
patches from the source image can be located in the target
image through their proposed attention module. Han et al.
[31], on the other hand, predicts this flow based on a human
parsing map. Cui et al. [32] combined elements of both virtual
try-on and pose transfer, resulting in a comprehensive ’dressing
in order’ framework. Their approach begins by generating a
pose-transferred image and subsequently overlays clothes in
a predetermined sequence. This method can simultaneously
achieve virtual try-on and pose transfer.

To further enhance the resolution of synthesized images,
Choi et al. [33] propose the VITON-HD dataset and method
that could first synthesize high-resolution virtual try-on im-
ages. In Lee et al.’s work, their HR-VITON unifies the
previous separated warp module and human parsing map that
after try-on synthesis into a single condition generator. Their
method could effectively consider the relationship between
parsing map and warped cloth and therefore preserve the
cloth detail. Recently, with the achievement of diffusion mod-
els [16]–[19], [34], Zhu et al.’s TryOnDiffusion [35] could
achieve detail-preserved cloth warping and high-resolution try-
on results by their diffusion model. Different from TryOn-
Diffusion, LaDI-VTON [36] takes the warped cloth as an
auxiliary input and inverts the unwarped cloth into semantic
space. Therefore, the try-on results could be controlled not
only by the cloth image but also by a text description.

While the aforementioned approaches have shown impres-
sive outcomes, they come with inherent limitations. They
demand multiple inputs like human parsing, pose estimation,
text descriptions, etc. Such extensive input requirements not
only increase the computational overhead but also limit the
flexibility of image editing. For shape editing, like in Fig.
1, users first find a desired in-shop cloth and then utilizes
the above-mentioned models to try it on, making the editing
process less efficient.

b) Garment-centric Editing: Dai et al. [37] argued that
it is important to edit design drafts. Their fashion editing
workflow formulates the fashion editing task as a bidirectional
image translation task. By translating an in-shop fashion gar-
ment to design draft, it benefits the designer in making mod-
ifications. Their pipeline is able to translate the edited drafts
back into new in-shop garments. TailorGAN [22] achieves
fashion attribute editing by specifying a reference image.
To address the lack of paired data between input garments
and edited images, TailorGAN proposes a self-supervision
training pipeline. By reconstructing a masked attribute region
with the guidance of a reference image, TailorGAN could
process fashion editing tasks. Nevertheless, this method can
only be applied to limited local areas like editing collars and
sleeves, which leads to poor generalization to other attributes.
Even though the existing work are capable of editing fashion
garments to some extent, it is demanding to provide a user-

friendly interaction in editing in-shop clothing.

B. Sketch-Guided Image Inpainting
Image inpainting recovers a masked region with consistent

context to a valid region. It assumes that the masked location
is given. Due to the loss of information, it is challenging to
recover consistent structure and texture. Therefore, Nazeri et
al. [38] proposed an edge-connect way for first reconstructing
the sketch map in the damaged region. With prior information,
the recovered edge map contributed to the completion of
the task. Their edge-connecting pipeline enables user-guided
editing and could achieve better semantic consistency with the
help of inpainted edges. However, their methods explicitly take
a masked edge map as input. This is against to real inpainting
scenario that the edge map could only been obtained from a
damaged image. Directly applying edge detection would turn
the masked boundary as edges. The boundary edges would be
inconsistent with the clean masked edge map and may lead to
the degradation to arbitrary image editing. Therefore, Xu et al.
[11] proposed a three-stage network E2I that utilizes sketches
to assist in the inpainting process. In the initial stage of the
E2I, it inpaints the sketches within the missing areas. These
approximated sketches are then fed into the second and third
networks, following a coarse-to-fine approach. Unlike Edge-
connect [38], which assumes that the damaged edge has been
obtained, E2I directly employs its coarse-to-fine inpainting
network with an empty edge as the input. Subsequent to this,
edge detection is performed on the resulting images, and the
corresponding areas are masked to produce the damaged edge
map. Edgeconnect then integrates this damaged edge map back
into their entire pipeline again. Although E2I could utilize
the edge map to guide the inpainting process, their pipeline
requires a three-stage network and costs much memory and
time to inference.

Other edge-guided inpainting work treat the edge as existing
additional auxiliary information. In Gated Conv [10], they uti-
lize a coarse-to-fine approach similar to the above-mentioned
E2I [11], but with a significant modification: they replace the
conventional convolution process with their proposed gated
convolution to obtain soft gating weights. This soft gating is
realized by introducing an extra convolution process to predict.
Their gated convolution is robust in processing free-form
masks (random strokes). In addition to the gated convolution,
they also integrate an edge map directly into their model so
as to guide the inpainting process. Following Gated Conv,
Jo [12] introduced SC-FEGAN for addressing face editing
tasks. They consider the editing process as image-to-image
translation [39], choosing the U-Net structure instead. Their
model can modify not just the image shape but also the color
by incorporating a user-guided color map as an input. Yang et
al. [13] consider the discrepancy between detected edges and
human-drawn edges by utilizing an edge refinement network
before the edge-guided inpainting network. To avoid the edge
information diminishing in the feature space, DeFLOCNet [14]
utilizes structure generation blocks to inject the edge into each
skip connection in a U-Net.

Although the above-mentioned approaches could edit an
image through learning a sketch-guided inpainting proxy task,
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Fig. 3. An overview of our proposed CoDE-GAN. It incorporates Content Decoupling Module to obtain latent representation fl of the input set x. In the
latter generation process, a Content Enhancement Module is applied to further improve the consistency between the synthesized textures and the unedited
textures.

they often overlook the gap between editing and inpainting.
In editing, user-provided masks roughly determine the editing
area. But when editing larger regions, the mask may cover a
continuous space, similar to a box-shaped mask. Few work
have ever studied the impacts of different masks, e.g. between
free-form and box masks. Although Edgeconnect [38] and E2I
[11] have considered the effect of mask ratios, they have not
explored the influence of different mask shapes. Regarding the
input edge, only the work by Yang et al. [13] addresses the
shape differences between detected edges and those drawn by
humans. However, the effectiveness of binarization remains
unexplored in any of these studies.

Benefited from the outstanding capability of Stable Diffu-
sion [20] in synthesizing images from textual descriptions,
ControlNet [15] replicates and fine-tunes the encoder from
Stable Diffusion to accept sketches as input. Consequently,
ControlNet can generate images that reflect the structure of the
input sketches and the textures of the input texts. Nevertheless,
it struggles to synthesize textures that are consistent with the
unedited regions unless detailed textual descriptions of the
textures are provided.

III. METHOD

Our proposed CoDE-GAN includes a Content Decoupling
Module (CDM) and a Content Enhancement Module (CEM).
In this section, we will first provide the problem formulation
for the sketch-guided image editing. Then we will give the
details of specific modules. We will also introduce the opti-
mizing objectives.

A. Problem Formulation

The aim of sketch-guided image editing is to synthesize an
image with user-intended sketches. Let I ∈ R3×w×h be the
ground truth RGB image where w is the image width and
h is the image height, M ∈ R1×w×h be the binary mask
where 1 indicates editing or masked area and 0 indicates the
unmasked region, and S be the input sketch, the sketch-guided

image editing model will generate a new image which is filled
in the consistent texture in the masked region M and has the
consistent sketch with S. During the training stage, sketch S
is extracted by edge detection network HED [40] H(·) and
multiplied with the mask M , which can be defined as:

S = H(I)⊙M, (1)

where ⊙ is the element-wise multiplication. Since HED can
only output a greyscale sketch map, S is binarized by setting
the threshold to 0.6 to simulate users’ drawn sketches. During
the inference stage, S is drawn by the users in the editing area.
In general, the inputs of the sketch-guided image synthesis are
the set x = {IM ,M, S}, where IM is the masked RGB image
obtained by:

IM = I ⊙ (1−M) (2)

To make the model learn specific texture and structure repre-
sentation for better image synthesis, the CDM is designed to
learn the decoupled texture representation and structure repre-
sentation and fuse them to obtain better latent representation
for image generation. Let the latent representation be fl, it can
be represented by:

fl = CDM(x) (3)

The latent representation is then fed into a generator G to
generate a synthesized image, which is defined by:

Î = G (fl) (4)

Lastly, four loss functions are used to train the network to
make the synthesized image Î similar to the original image
I as much as possible. The detail of the loss functions is
illustrated in Section III-E.

B. Content Decoupling Module

The content decoupling module consists of a Condition De-
coupling Block (CDB), a structure encoder, a texture encoder,
and a bottleneck.
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a) Condition Decoupling Block: This block decouples
the input x into two types of conditions: the texture condition
xt and the structure condition xs. Given the image I , the mask
M and the sketch S, the xt and xs can be computed by:

xt =IM ⊕M (5a)
xs =IgM ⊕ S, (5b)

where ⊕ is channel-wise concatenation, and IgM ∈ R1×w×h is
the grey image of IM . It can be seen from the formulas that the
input xt ∈ R4×w×h aligns the setting of image inpainting and
the input xs ∈ R2×w×h is conditioned to the sketch. Here, xs

incorporates sketch with the grey image instead of RGB image,
because grey image is more effective to represent structural
information than RGB image and reduces the representation
space from R3 to R1. Moreover, traditional image processing
algorithms, such as Canny edge detection, typically work with
grey images to obtain edge details.

b) Texture Encoder: The texture encoder ϵt feeds in the
condition xt and learn the texture representation by:

ft = εt (xt) , (6)

where ϵt is the texture encoder. As the texture encoder mainly
aims to reconstruct the texture of the masked region, which is
the same as the image inpainting task, we adopt the encoder
structure of Gated Conv [10]. Gated Conv designs a gated
convolution that adapts a dynamic feature selection mechanism
to make the convolution dependent on the soft mask that is
automatically learned from data, and improves the texture
consistency and inpainting quality of the masked region.
Specifically, for the input feature fin, a gated convolution
Convg applies an additional convolution to obtain a soft
weight map and then multiples it with a learned feature of
fin. It is formulated as:

Convg (fin ) = Conv (fin )⊙ σ (Convd (fin )) , (7)

where Conv is the conventional convolution, Convd is the
convolution that outputs single-channel feature map, and σ is
the sigmoid function that scales learned gating to range (0, 1).

c) Sturcture Encoder: The structure encoder ϵs takes the
input xs and learns the structure representation fs by:

fs = εs (xs) (8)

The structure of ϵs is same with ϵt, but the gated convolution is
replaced with conventional convolution. There are two reasons
why we use conventional convolution here: 1) we wish this
encoder mainly focused on capturing the basic structure of the
whole image, and thus the texture information learning is not
that important and will be achieved by the texture encoder. 2)
Gated convolution adapts an extra convolution to learn the soft
weighting map, leading to an increase in computation cost.

d) Bottleneck: Lastly, we fuse the texture representation
and structure representation by a bottleneck structure to reduce
the representation space. The bottleneck structure consists of
four dilated gated convolution blocks. We firstly concatenate
ft and fs, and feed it to a bottleneck ϵb to object the fused
latent representation fl. It is formulated as:

fl = ϵb(ft ⊕ fs) (9)

1×1 Conv

IN

𝑡𝑎𝑛ℎ

𝑓!

⊙ + ⊙

𝐶𝑅!𝑀 %𝑀𝐼"'𝐶𝑅!

Fig. 4. Content response map generator (CRG) transforms features into
content response map. The response map is masked and fused with a grey
image.

C. Adversarial Generation

To allow the synthesized results more realistic and reason-
able, the adversarial generation process is incorporated.

a) Generator: Given the fused latent representation fl,
the generator G could synthesizes a fake image Î:

Î = G(fl)⊙M + IM (10)

The G consists of five gated convolution blocks with twice
upsampling which is symmetric to the structure of encoder ϵt.

b) Discriminator: Following with Pix2Pix [39], we im-
plemented a patch discriminator D which output real/fake
discrimination on image patches instead of the whole image.
Its discrimination could focus on local details and enhance
the fidelity of the generated image. The structure of D is like
an encoder that only consists of six convolution blocks. Be-
sides, to stabilize the adversarial training process, we adopted
spectral normalization on the discriminator as well [41].

D. Content Enhancement Module

To further improve the consistency of synthesized content,
a Content Enhancement Module (CEM) is applied to the
generator G. As shown in Fig. 3, CEM extracts the features
from the second and fourth blocks. The features have different
resolutions and are denoted as f64 and f128 of which the
subscript indicates the resolution of the feature map. Then,
the two features are respectively fed into a Content Response
Map Generator (CRG) to generate the content response maps
CR64 and CR128. As Fig. 4 illustrates, we obtain the content
response map CRi by:

CRi = CEM(fi) (11)
= tanh [IN(Convd(fi))]⊙M + Ig ⊙ (1−M),

where i = 64 or i = 128, Convd reduces the feature
dimensionality of fi to single, IN denotes an instance normal-
ization layer, and tanh is a Tanh activation function. Then,
we calculate the cosine similarity between CRi and the grey
image Ig and regard it as an objective function, which is
computed by:

Lc =

(
1− CR64 · Ig

∥CR64∥ ∥Ig∥

)
+

(
1− CR128 · Ig

∥CR128∥ ∥Ig∥

)
(12)

We hope that by minimizing the similarity distance between
the CRi and the grey image Ig , the features of generator can
also be optimized through gradient backpropagation.
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Fig. 5. Visualization of the synthesized content response map CR at
resolution of 64× 64 and 128× 128.

We visualize content response maps at resolutions 64 ×
64 (CR64) and 128 × 128 (CR128) in Fig. 5. It could be
observed that the CEM could learn the structure and texture
of the image and the content response map with a higher
resolution clearly exhibits more uniform content and sharper
boundaries. Since the input sketch is sparse and gradually
diminishes in the CNN feature space, it is important to inject
the sparse sketch information in the CNN space, especially
in the generator. In DeFlocNet [14], the control inputs are
injected in all blocks of encoders and generators to preserve
the guidance information. However, this method will add
additional computation costs and can not provide other content
information except the input controls, like the structure and
texture information around the sketch. In our case, we optimize
the features of the generator to be like the original grey image
which has rich structure and texture information, the generator
will learn to recover the structure and texture of the masked
region as shown in Fig. 5. Therefore, our proposed CEM is
able to enhance and refine the content information, leading to
more detailed and high-quality generation results.

E. Optimization Objectives

For training the CoDE-GAN, except for the above-
mentioned content-aware loss, we use reconstruction loss, per-
ceptual loss, and generative adversarial loss. In the following,
we will introduce these loss functions.

a) Reconstruction Loss: To ensure the generated image
Î is close to the RGB image I within the unmasked region,
L1 loss is used between them on the unmasked region. It is
defined by:

Lℓ1 = |I − Î|1 ⊙M (13)

b) Perceptual Loss: Following style transfer, we intro-
duce perceptual loss [42] to keep the perceptual information
as well. It is obtained by:

Lper =
∑
i

wi · L1
(
Fi(I)− Fi(Î)

)
, (14)

where Fi stands for ith activation layer of VGG-19 network,
and wi is the corresponding weight. Specifically, the selected
layers are relu1 1, relu2 1, relu3 1, relu4 1 and relu5 1. In
our experiments, we set the all corresponding weight wi as
1.0.

c) Generative Adversarial Loss: The synthesis process
is conditioned to inputs x = {IM ,M, S}. To allow the dis-
criminator D to consider the conditions, despite the real/fake
image I and Î , D will take x as well. We adopted hinge loss
for optimizing spectral normalized discriminator D:

LD
adv =EI,x[min(0,−1 +D(I, x))]+

EÎx,x
[min(0,−1−D(Î , x))]

(15)

And the adversarial loss for the total network CoDE-GAN:

LG
adv = −EÎ,x[D(Î , x)] (16)

The overall objectives are:

L = λper Lper + λℓ1Lℓ1 + λcLc + LG
adv, (17)

λper, λℓ1, λc, λadv denotes the coefficients for perceptual loss,
reconstruction, content-aware loss and adversarial loss respec-
tively.

IV. EXPERIMENTS

We conducted extensive quantitative and qualitative exper-
iments on several datasets, such as fashion human, garment,
and outdoor church dataset, to demonstrate the effectiveness of
our proposed CoDE-GAN. In this section, we first introduce
the dataset and experiments settings. Then, we compared with
the state-of-the-art methods and conducted ablation studies
of the proposed CDM and CEM modules. Lastly, we further
discuss the influence of edge pre-processing and mask types.
It shows that our methods are robust.

A. Dataset and Experiments Settings

a) Datasets: We investigate the effectiveness of our
model on two garment synthetic datasets (Garment dataset
[22] and CafiGarment dataset), a fashion human dataset (ATR
dataset [21]), and an outdoor building dataset (LSUN outdoor
church [23]): (1) Garment dataset consists of 9.6k images
about upper clothing. (2) CafiGarments collected 17k images
with 79 clothing categories across upper, bottom, and full
body clothing. (3) ATR dataset comprises of 17.7k humane
images with various poses and complex background. (4)
LSUN outdoor church is a subset of LSUN dataset which
consists of 126k images. During our experiments, these above-
mentioned datasets are divided into train and test set with the
ratio of 9:1. Except the LSUN outdoor church dataset that we
adopt its official validation set for testing which contains 300
images.

b) Evaluation Metrics: Measuring the quality of edited
image content in a quantitative way can be challenging.
Collecting pairs of edited images for comparison can be time-
consuming and expensive. Therefore, to evaluate the editing
results in a more practical and cost-effective way, we evaluate
sketch-guided image inpainting results on test dataset. We
employ the Fréchet Inception Distance (FID), Structural Sim-
ilarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR)
as our quantitative metrics. FID evaluates the distance between
the distribution of the generated images and the ground truth
images. By calculating the Fréchet distance in Inception Net’s
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(c) Ours (f) SC-FEGAN [12](b) Sketch-Guidance (g) DeFLOCNet [14](e) E2I [11](d) Gated Conv [10](a) Input

Fig. 6. Comparisons with state-of-the-art methods: Gated Conv [10], E2I [11], SC-FEGAN [12], and DeFLOCNet [14]. The first two rows show the qualitative
results in ATR Dataset. The third and fourth rows plot the results of CafiDataset and Garment Dataset. The last two rows present object shifting of the tower
part in LSUN outdoor church dataset.

feature space, FID effectively captures the perceptual similar-
ity between the two distributions, with a lower FID indicating
higher realism and perceptual similarity. PSNR employs pixel-
wise differences to compute a ratio between the maximum
possible power of a signal and the power of corrupting noise,
serving as a measure of the visibility of errors. SSIM, measures
the structural similarity between the generated image and the
ground truth image. SSIM is similar to PSNR but is believed
better aligned with human perception. Higher values of SSIM
and PSNR indicate better image quality. Given our primary
aim of editing images rather than reconstructing them, we have
selected FID as our principal metric.

c) Implementation Details: Due to computation limi-
tations, we resize each image with resolution of 256×256.
We then utilize HED [40] edge detector to obtain sketches.
For simulating manually drawn sketches, we binarize the
detected edge maps with a threshold of 0.6. In terms of mask

generation, we randomly generate single rectangular box mask
with a ratio of 30% in all experiments. For loss weights, we set
λℓ1 = 100, λper = 20, λc = 5, λadv = 1 in all experiments.
We run all experiments with batch size 12 in a single RTX
3090 GPU. We train 500k iterations in each dataset. We adopt
Adam optimizer with learning rate of 1e-4 for the whole
synthesis model and 4e-4 for the discriminator.

B. Comparison with State-of-the-Art Methods

We compare our CoDE-GAN with two approaches that
utilizing coarse-to-fine structure (E2I, and Gated Conv) and
two pixel translation structure (DeFLOCNet, SC-FEGAN).

• Gated Conv [10]: For the implementation of gated conv,
we adopted the implementation of PyTorch version and
keep the hyper parameters consistent with the original
implementation.
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(d) Gated Conv [10] (g) DeFLOCNet [14](e) E2I [11] (f) SC-FEGAN [12](c) Ours(b) Sketch-Guidance(a) Input

Fig. 7. Flexible editing results on challenging image content and area. The first two rows shows the editing of pose, clothing styles on fashion human. The
last two rows edits the two sleeves simultaneously.

• E2I [11]: The E2I proposed three-stage method which
consists of edge inpainting network, and a coarse-to-fine
network. In the sketch-guided inpainting, we assume the
sketch is a given input. Therefore, we removed its edge
inpainting part and trained the rest with consistent hyper
parameters and losses.

• DeFLOCNet [14]: DeFLOCNet utilized an encoder-
decoder structure but choose to inject sketch into each
skip connections. We trained it with its original hyper
parameters.

• SC-FEGAN [12]: The original SC-FEGAN utilizes color
sketches to edit an images additionally. For fair compar-
ison, we only keep the edge sketches as the input.

1) Qualitative Comparison: Fig. 6 illustrates the qualitative
comparison results with the above methods on four datasets.
As shown in Fig. 6 (e), we can see that E2I has relatively
poor ability to generate the reasonable image on the garment
datasets and totally collapses on the ATR dataset which
consists of the person images. This is because that E2I directly
employs traditional convolution operation to the encoder-
decoder architecture. On the one hand, the encoder-decoder
network processes features through every layer, lacking direct
connections between different layer. This lack of inter-layer
connectivity restricts its ability to leverage low-level informa-
tion effectively, limiting its capacity to generate detailed local
textures. On the other hand, the traditional convolution opera-
tions cannot distinguish between valid and invalid input pixels,
resulting in an undesirable blending of conditional information
and generating synthesized results with blurred boundaries.
Especially for the clothing images which have various styles,
material textures and colors, it is much more difficult to infer

much from the valid area to fill in the accurate content for
masked region. Therefore, E2I performs relatively poor on
the image generation on the Garment datasets. Different from
E2I, DeFLOCNet adopts the U-Net architecture and add skip
connections between the mirrored layers in the encoder and
decoder stacks, allowing low-level information to flow pass
across the network and can generate more realistic images
than the simple encoder-decoder network. So DeFLOCNet
generates better results than E2I. However, DeFLOCNet still
uses the traditional convolution operations in the network and
fails to generate realistic images. SC-FEGAN and Gated Conv
both use gated convolution operations in the network. They
can generate realistic textures for the things without much
variations well, like the skin textures (see 2nd row of Fig. 6)
and building textures (see 5th and 6th row of Fig. 6). However,
the generation results on the garments still have flaws. For
example, SC-FEGAN cannot generate consistent textures with
the current clothing (see Fig. 6 (f)) while Gated Conv fail
the accurate texture synthesis at some pixels (see Fig. 6 (d)).
However, our model employs a Content Decoupling Module
to learn better texture and content representation and uses a
Content Enhancement Module to supervise the consistency
of synthesized textures, our proposed CoDE-GAN generates
realistic images with consistent structures and fine-grained
texture details on the garment datasets and building dataset.

Fig. 7 exhibits the flexibility of fashion image editing, where
all methods are trained using randomly generated single box
masks that cover 30% of the image area. By flexibility, we
refer to the capability to arbitrarily edit any region regardless
of its shape, are, or continuity. More than one mask is used
in Fig. 7’s samples, demonstrating our method’s capacity
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TABLE I
QUANTITATIVE COMPARISONS IN FASHION HUMAN ATR DATASET AND LSUN OUTDOOR CHURCH DATASET.

Metrics

ATR Dataset LSUN Outdoor Church Dataset

DeFLOC- SC-FE Gated E2I [11] Ours Ours DeFLOC- SC-FE Gated E2I [11] Ours Ours
Net [14] GAN [12] Conv [10] (refine) Net [14] GAN [12] Conv [10] (refine)

FID ↓ 75.72 69.7 79.02 77.44 54.47 43.65 34.61 39.34 40.15 39.85 30.70 23.86
SSIM ↑ 0.79 0.80 0.82 0.80 0.83 0.83 0.79 0.79 0.80 0.78 0.81 0.81
PSNR ↑ 19.34 20.55 21.98 19.84 22.84 22.95 21.22 18.93 21.26 18.21 19.99 22.04

TABLE II
QUANTITATIVE COMPARISONS IN GARMENT DATASET AND CAFIDATASET.

Metrics

Garment Dataset CafiDataset

DeFLOC- SC-FE Gated E2I [11] Ours Ours DeFLOC- SC-FE Gated E2I [11] Ours Ours
Net [14] GAN [12] Conv [10] (refine) Net [14] GAN [12] Conv [10] (refine)

FID ↓ 21.58 21.46 21.35 23.57 20.66 6.21 22.19 23.07 22.43 26.72 13.67 6.73
SSIM ↑ 0.85 0.85 0.87 0.85 0.85 0.87 0.89 0.90 0.91 0.90 0.92 0.92
PSNR ↑ 23.49 23.14 24.91 22.40 23.30 25.15 26.35 27.91 28.25 27.39 30.53 29.95

to handle multiple edits simultaneously. The first two rows
display a challenging scenario in the ATR dataset involving
irregular masks. In the first row, the left hand’s pose is altered
and the jeans are lengthened. The second row modifies the
short pants into a short skirt while removing the watermark.
In these complex editing tasks, our CoDE-GAN succeeds in
generating the most plausible textures. On the other hand, E2I,
SC-FEGAN, and DeFLOCNet exhibit artifacts on the masked
background. Although Gated Conv can accurately represent
the edited content, its synthesized clothing textures are less
uniform than ours, especially when editing the geometric
pattern on the floor in the second row. Fig. 7’s third and fourth
rows highlight CoDE-GAN’s ability to handle simultaneous
edits on two distinct areas (the sleeves) with discontinuous
box masks, which lie outside the training distribution. Despite
these challenging conditions, CoDE-GAN consistently synthe-
sizes visually appealing edited images. On the other hand, E2I
and DeFLOCNet tend to produce artifacts around the mask
boundary. Both Gated Conv and SC-FEGAN struggle with
the task, notably failing to correctly synthesize the cuff region
in the third row and generating artifacts in the background.

2) Quantitative Comparison: Tab. I and Tab. II list the
quantitative comparison with the state-of-the-art methods on
four datasets. It is clear that our CoDE-GAN achieves compet-
itive performance on all the datasets. In terms of the FID, our
CoDE-GAN obtains remarkably better scores than other meth-
ods. This indicates that our method could synthesize the most
realistic images. In addition to FID, our CoDE-GAN excels in
maintaining structural and perceptual quality, as indicated by
strong performance in the SSIM and PSNR metrics. Moreover,
it should be noted that our proposed CoDE-GAN does not
include the refined stage. For fair comparison with Gated Conv
and E2I, we followed Gated Conv and used our proposed
CoDE-GAN to train a refined model, which further improves
the performance by a large margin. This demonstrates that
our proposed CoDE-GAN can be easily combined with other
methods to improve the generation performance.

C. Ablation Studies

TABLE III
ABLATION RESULTS ON THE DESIGNED CDM AND CEM MODULES.

CDM CEM FID ↓ SSIM ↑ PSNR ↑

- - 69.63 0.8070 21.38
✓ 56.87 0.8291 22.55

✓ 55.54 0.8276 22.68
✓ ✓ 54.47 0.8331 22.84

In this section, we perform ablation studies to analyze the
effectiveness of each module of our proposed CoDE-GAN.
To this end, we train a series of variant models on the ATR
dataset: i) The Baseline model is the Gated Conv [10] without
refine stage. ii) The +CDM is the Baseline model with encoder
replaced by our proposed CDM. iii) The +CEM is the Baseline
model which adds our proposed CEM. Tab. III and Fig. 8
respectively show the quantitative and qualitative results of the
variant models and our full model. We can see from the results
that our full model is superior to all the variant models. As Fig.
8 (c) shown, the generated image by Baseline reveals flaws
when editing the dress length, producing incorrect textures.
The CDM and CDM both perform better than Baseline in all
metrics, but there are artifacts in the synthesized textures could
be further improved. Particularly, compared with Baseline, Fig.
8 (d) shows that +CDM could help to improve the consistency
between synthesized textures and unedited image content. On
the other hand, +CEM could help to reduce less artifacts and
allow the synthesized textures to be uniform. For example,
the background artifacts in the second row of Fig. 8 (e) is
reduced.in As we can see in Fig. 8 (f), our full model could
generate reasonable edited textures.

Tab. III shows the quantitative results of ablation experi-
ments carried out on the ATR dataset. The first row represents
Gated Conv, our baseline model, on which our CoDE-GAN is
built by applying CDM and CEM to its coarse network. The
second and third rows show that our proposed CDM and CEM
effectively reduce the FID score by about 25% compared to
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(b) Sketch-Guidance (f) Full Model(c) Baseline (d) + CDM (e) + CEM(a) Input

Fig. 8. Qualitative results for ablation studies.

the baseline. Notably, CDM primarily enhances SSIM, while
CEM improves FID and PSNR. Combining these two modules
together further enhances all of the metrics.

D. Discussions

In this section, we will discuss the impact on more possible
settings in our proposed content-aware loss (Eq. 12), different
preprocessing on the edge, and training masks.

TABLE IV
QUANTITATIVE RESULTS ON VARIOUS COMBINATIONS OF LOSS FUNCTION

AND GROUND TRUTH TYPES.

Loss Function Ground Truth FID ↓ SSIM ↑ PSNR ↑

L1 Grey 17.88 0.87 25.24
Cos Grey 5.02 0.89 26.17
L1 Segmentation 6.82 0.87 25.08
Cos Segmentation 6.98 0.86 24.91
L1 Colour 17.57 0.87 25.13
Cos Colour 15.77 0.88 25.29

a) Analysis on Content-Aware Loss: Tab. IV provides
the comparison study of content-aware loss, evaluating various
combinations of loss (Eq. 12) functions and ground truth types
in the Garment dataset with 30% free-form masks. The optimal
combination found involves using cosine similarity as a loss
function to supervise the content response map with a grey
image. This setup outperforms the rest by achieving the lowest
FID score of 5.02 and the highest SSIM and PSNR scores of
0.89 and 26.17, respectively. When the L1 loss function is used
with a grey image, we observe a decrease in performance.
This is likely due to the lack of color information in the
grey image, leading to variations in intensity across different
images. On the other hand, cosine similarity helps normalize
these intensity ranges, making it a more effective choice for
content constraint. We also examined the effect of using fore-
ground segmentation. Although this led to improvements in the
metrics, it was not as generalizable as using a grey image, es-
pecially with complex datasets like the ATR dataset or LSUN

outdoor church dataset. The binary segmentation is insufficient
to represent different content regions in these cases, whereas
the grey image can distinguish different contents through
intensity variations. Finally, we considered the use of a color
image for supervision but found the model challenging to
optimize. The content response map, synthesized by the CEM
from feature maps, is expected to resemble the final RGB
output. This places a heavy burden on the CEM, potentially
requiring a larger model with more parameters. This goes
against our design motivation of maintaining a lightweight,
efficient module to apply content constrain. Therefore, this
combination did not yield optimal results.

b) Analysis on Edge Binarization: The sketch-controlled
editing tasks require the user to input modified sketches.
However, current sketch-controlled literatures typically utilize
edges extracted via the Holistically-Nested Edge Detection
(HED) technique as sketches, which often diverge from ac-
tual user inputs. To determine the influence of preprocessing
methods on HED-extracted edges, we conducted a comparison
study to assess the potential benefits of binarizing these
edges to better mimic user-drawn sketches. The results of this
investigation, presented in Tab. V, are based on the Garment
Dataset. Each result was evaluated on the corresponding edge
preprocessing. By binarizing the extracted grayscale edges
with a threshold of 0.6, we observe a substantial deterioration
in the quantitative metrics. In particular, the FID metric
demonstrates a more than twofold increase for most methods,
except for E2I. This suggests that E2I is robust to edge form
variations, likely due to its two-stage network implementation,
which incorporates edges at each stage. This structure empha-
sizes the importance of edges, aiding in the reconstruction
of spatial structure. Our method, however, still achieves the
best FID score of 5.02 on grayscale edges and 20.66 on
binarized edges. The decrease in performance is attributed to
information loss during edge binarization. The HED-extracted
edges represent the likelihood that a given pixel could be an
edge. Consequently, aside from actual edge pixels, there is a
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TABLE V
QUANTITATIVE RESULTS ON EDGE PREPROCESSING METHODS.

Metrics

Binarized Edge Greyscale Edge

DeFLOC- SC-FE Gated E2I [11] Ours DeFLOC- SC-FE Gated E2I [11] OursNet [14] GAN [12] Conv [10] Net [14] GAN [12] Conv [10]

FID ↓ 21.58 21.46 21.35 23.57 20.66 9.03 7.77 6.89 17.07 5.02
SSIM ↑ 0.85 0.85 0.87 0.85 0.85 0.86 0.86 0.87 0.87 0.89
PSNR ↑ 23.49 23.14 24.91 22.40 23.30 24.32 24.11 24.69 23.97 26.17

TABLE VI
EVALUATION RESULTS WHEN TRAINED ON FREE-FORM MASK WITH DIFFERENT RATIOS.

Mask Ratio 30% 50% 70%

Metrics FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑

DeFLOCNet [14] 23.50 (5.84) 0.76 (0.90) 20.00 (27.27) 14.10 (7.58) 0.81 (0.85) 22.14 (25.56) 13.39 (11.47) 0.81 (0.80) 22.52 (23.60)
SC-FEGAN [12] 24.92 (5.51) 0.78 (0.92) 20.91 (28.24) 21.72 (9.48) 0.79 (0.86) 21.44 (25.39) 19.29 (13.83) 0.80 (0.79) 22.07 (23.14)
Gated Conv [10] 25.92 (3.76) 0.80 (0.93) 21.88 (29.28) 29.25 (14.34) 0.82 (0.88) 21.90 (26.69) 27.38 (20.81) 0.82 (0.82) 23.11 (24.60)

E2I [11] 96.64 (15.84) 0.67 (0.92) 17.45 (28.07) 63.92 (32.26) 0.72 (0.79) 17.08 (21.38) 84.53 (93.62) 0.70 (0.60) 16.14 (16.05)
Ours 22.55 (2.79) 0.78 (0.94) 21.19 (30.62) 14.13 (4.76) 0.81 (0.89) 22.49 (27.99) 12.45 (7.10) 0.83 (0.84) 22.98 (25.73)

TABLE VII
EVALUATION RESULTS WHEN TRAINED ON BOX MASK WITH DIFFERENT RATIOS.

Mask Ratio 30% 50% 70%

Metrics FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑ FID ↓ SSIM ↑ PSNR ↑

DeFLOCNet [14] 34.35 (9.03) 0.74 (0.86) 20.30 (24.32) 25.52 (18.45) 0.77 (0.77) 21.39 (21.32) 26.59 (27.48) 0.76 (0.71) 20.28 (19.51)
SC-FEGAN [12] 22.63 (7.77) 0.77 (0.86) 21.97 (24.11) 22.6 (14.14) 0.77 (0.77) 21.99 (21.13) 28.12 (21.11) 0.76 (0.69) 21.01 (18.95)
Gated Conv [10] 23.51 (6.89) 0.77 (0.87) 21.04 (24.69) 23.77 (12.09) 0.78 (0.79) 21.74 (21.67) 23.01 (15.90) 0.78 (0.72) 22.02 (21.11)

E2I [11] 124.49 (17.07) 0.62 (0.87) 16.14 (23.97) 91.16 (33.91) 0.67 (0.75) 16.47 (18.48) 110.89 (78.77) 0.66 (0.59) 16.02 (13.70)
Ours 29.26 (5.02) 0.76 (0.89) 20.84 (26.17) 25.47 (8.36) 0.79 (0.82) 22.00 (23.63) 27.47 (11.55) 0.79 (0.75) 21.52 (21.91)

higher probability assigned to pixels near the edge, providing
crucial prior information about an image’s spatial structure.
Upon binarization, the data becomes too sparse to effectively
guide the model in reconstructing spatial structure. Although
grayscale edges allow models to perform well quantitatively,
their characteristics do not resemble the naturalistic qualities
of human-drawn sketches. Therefore, we adopt binarized edge
training on all of the qualitative results.

TABLE VIII
RELATIONSHIPS TO MASK RATIOS AND REGION OF INTERESTS.

Ratio Type Free-Form Box

mask-to-image 30% 50% 70% 30% 50% 70%
mask-to-foreground 34% 55% 75% 46% 74% 91%

c) Analysis on Training Mask Settings: The flexible
editing may involve various mask types. To evaluate the impact
on the robustness of different masks when trained on a specific
mask type, we conduct comparison experiments on Garment
Dataset. Tab. VI and Tab. VII presents results obtained from
training with both free-form and box masks at varying mask
ratios. Each result corresponds to a specific mask setting and is
evaluated under six different mask configurations - two mask
types (box and free-form), and three mask ratios (30%, 50%,
70%). Additionally, results evaluated with mask configurations
that align with the training settings are also included in the
brackets.

Overall, when the evaluation mask aligns the training set-
tings, our methods achieve the best performance (see from the
brackets results). When evaluated in all kinds of masks, we
find it is beneficial to increase training mask ratio as it brings
improvement to most of the methods. This is because that most
of the methods only calculate loss on reconstructed (masked)
region. A greater mask area would lead to much gradient
information. However, we find the gain is limited when trained
on box mask with 70% area (performance decreased in the last
three columns of Tab. VII). Since the box masks are continu-
ous, it is much likely to present on the foreground of the image.
Therefore, less information is provided when reconstructing
the masked region. Tab. VIII shows the corresponding masked
foreground region. 70% box mask would cover more than 90%
foreground region. In conclusion, it is optimal to trained mask
ratio with about 70% in the foreground which is free-form
mask with 70% ratio or box mask with 50% ratio. Comparing
with other SOTA methods, ours CoDE-GAN is robust when
trained on free-form mask. Its FID achieves the best in 30%
and 70% mask ratio. The difference when trained on 50% is
less 1% to DeFLOCNet.

V. FAILURE CASE ANALYSIS

Fig. 9 provides two examples where CoDE-GAN encounters
difficulties. CoDE-GAN’s primary objective is to edit the
shape of clothing content with textures consistent with the
unmasked (reference) region. The model learns to automat-
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Input Sketch-Guidance Result

(a)

(b)

Fig. 9. Failure case in handling distracting background.

ically find the correct reference content through adversarial
training. However, when the background content is distracting
or similar to the foreground, our model struggles to perform
satisfactorily. The first three columns in the example demon-
strate the completion of the obscured coat and the removal of
the bag against a brick background. While our CoDE-GAN
method performs better on reproducing the background brick
texture, it unfortunately falls short in synthesizing convincing
clothing textures. The synthesized textures in the regions of
interest are overly influenced by the background, causing
an undesired shift towards background textures instead of
the intended clothing. The final three columns attempts to
modify short pants into an A-line dress. The similarity in
color between the clothing and the background presents a
challenge for the model, resulting in a failure to identify the
correct reference color, despite the provision of sketches to
outline the shape of the dress. Consequently, the synthesized
dress textures align more closely with those of the ground
floor. Therefore, while CoDE-GAN generally exhibits effective
performance across numerous samples, it continues to face
challenges when handling images with visually intricate or
ambiguous backgrounds.

VI. INTERACTIVE WEB USER INTERFACE

Fig. 10 presents an interactive web user interface (UI),
specifically designed to enable users to easily edit images.
Users can upload their own images onto the web UI, and
using the mask layer, they can draw a transparent black mask
to mark the area they wish to edit. Following this, users
can sketch their desired edits on top of the image using the
sketch layer. Once the desired edits have been input, users can
click the inference button, triggering our backend CoDE-GAN
model to generate the edited results. This user-friendly web UI
leverages Python as backend service, with basic HTML and
JavaScript forming the front-end interface. Notably, our Web
UI has the potential to be a valuable resource for other sketch-
controlled methods, providing the community with a tool that’s

Fig. 10. Interactive web user interface for allowing sketch-controlled editing.

both accessible and easy to use. The UI’s web-based nature
reduces the need for user-side installations, allowing access
via a web browser. Unlike existing model (SC-FEGAN) that
packages the UI and the model together into an executable file
exclusive for Windows systems, our web UI can be effortlessly
adapted to MacOS without any need for code modification or
compilation. Furthermore, the model deployed as a backend
service provides flexibility for other developers. They can use
the API in similar applications, test different models with
minor adjustments, and choose whether to deploy the backend
services locally or globally, given the availability of a public
IP address. The hardware requirement is a minimum of 4GB
runtime memory, providing further flexibility for deployment.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we have proposed a new method, CoDE-
GAN, to allow for flexible sketch-controlled editing of fash-
ion image content with consistent textures. Our approach
decouples content and texture representation to overcome
the obstacle of reconstructing content regions contoured by
sketches due to the lack of information within them. We have
shown through experiments on the fashion human ATR dataset
and garment-based Garment and CafiGarment datasets that
CoDE-GAN achieves superior results compared to state-of-
the-art methods in terms of perceptual quality and editing
flexibility. CoDE-GAN has the potential to greatly improve
the efficiency of image editing in the fashion industry.

As in future work, there are several directions that can
be explored to improve the CoDE-GAN method proposed
in this study. One possibility is to integrate the use of
additional guidance, such as texture patches, to edit the
clothing textures. Another direction is to incorporate more
advanced generative models, such as Generative Flow models
or Denoising Diffusion models, to improve the quality of
the generated images. Furthermore, it would be interesting to
explore the use of CoDE-GAN for other applications beyond
the fashion industry, such as image inpainting or guided
image reconstruction. Finally, it would be valuable to further
evaluate the performance of CoDE-GAN on a wider range of
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datasets beyond the fashion dataset and the church dataset to
demonstrate its generalizability.
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